
1!
CIS 422/522

CIS 422/522 Winter 2014! 1!

CIS 422/522  
2nd Half Concept Review!

CIS 422/522 Winter 2014! 2!

Presentations!

•  Plan on 12 minutes for your presentation including a
couple minutes for questions and setup. Practice so
the timing is right!

•  Presentations should address the following!
–  Status against project plan!

•  What was planned for this date? !
•  What was actually produced?!

–  Demo of project software!
–  Lessons learned including but not limited to:!

•  What were the root causes of any schedule delays and what would
have helped?!

•  What kinds of control issues caused the most problems?!
•  Which software engineering techniques proved most effective in

keeping your project under control?!
–  Course improvements: suggestions for making the course

better!

2!
CIS 422/522

CIS 422/522 Winter 2014! 3!

Final Deliverables!

•  Fill out and return Peer Evaluation by
Wednesday evening!

•  Make sure project deliverables are complete
on your assembla site!
–  Home page provides a directory to all deliverables!
–  It is clear how to install and execute your app.!
–  It is clear how to run your app!

•  Provide any test cases and results you have!
–  The final version of your code is easily

downloadable!
–  Your presentation slides are available!

CIS 422/522 Winter 2014! 4!

Final Exam!

•  Final Monday 10:15!
•  Same format as midterm!

3!
CIS 422/522

CIS 422/522 Winter 2014! 5!

Concept Review!

CIS 422/522 Winter 2014! 6!

View of SE in this Course!

•  The purpose of software engineering is to
gain and maintain intellectual and managerial
control over the products and processes of
software development.!
–  “Intellectual control” means that we are able

make rational choices based on an understanding
of the downstream effects of those choices (e.g.,
on system properties).!

–  Managerial control means we control
development resources (budget, schedule,
personnel). !

4!
CIS 422/522

CIS 422/522 Winter 2014! 7!

Fit in the Development Cycle!

Software
Design

System Integration
and Testing

Coding

Deployment

Maintenance and
Evolution

Requirements
Analysis

Software
Architecture

“…The earliest artifact that enables the priorities
among competing concerns to be analyzed, and
it is the artifact that manifests the concerns as
system qualities.”

CIS 422/522 Winter 2014! 8!

Definition!

!“The software architecture of a program or computing system is
the structure or structures of the system, which comprise
software components, the externally visible properties of those
components, and the relationships among them.” - Bass,
Clements, Kazman  
!

•  Systems typically comprise more than one
architecture!
–  There is more than one useful decomposition into

components and relationships!
–  Each addresses different system properties or design goals!

•  It exists whether any thought goes into it or not!!
–  Decisions are necessarily made if only implicitly!
–  Issue is who makes them and when!

5!
CIS 422/522

CIS 422/522 Winter 2014! 9!

Examples: These are architectures!
•  An architecture comprises a set of!

–  Software components!
–  Component interfaces!
–  Relationships among them!

•  Examples!

Structure! Components! Interfaces! Relationships!

Calls Structure! Programs! Program interface
and parameter
declarations.!

Invokes with
parameters  
(A calls B)!

Data Flow! Functional tasks! Data types or
structures!

Sends-data-to!

Process! Sequential
program
(process, thread,
task)!

Scheduling and
synchronization
constraints!

Runs-concurrently-
with, excludes,
precedes!

CIS 422/522 Winter 2014! 10!

This is not!
Control
Process

(CP)

Noise
Model

(MODN)

Reverb
Model

(MODR)

Prop Loss
Model

(MODP)

Typical (but uninformative) architectural diagram
•  What is the nature of the components?
•  What is the significance of the link?
•  What is the significance of the layout?

6!
CIS 422/522

CIS 422/522 Winter 2014! 11!

Effects of Architectural Decisions!
•  What kinds of system and development properties

are and are not affected by architecture?!
•  System run-time properties!

–  Performance, Security, Availability, Usability!
•  System static properties!

–  Modifiability, Portability, Reusability, Testability!
•  Production properties? (effects on project)!

–  Work Breakdown Structure, Scheduling, time to market!
•  Business/Organizational properties?!

–  Lifespan, Versioning, Interoperability!
•  But not functional behavior!

CIS 422/522 Winter 2014! 12!

Relation to Stakeholders!
•  Many stakeholders have a vested interest in the

architectural design!
–  Management, marketing, end users!
–  Maintenance organization, IV&V, Customers!
–  Regulatory agencies (e.g., FAA)!

•  Important because their interests are diverse and
often defy mutual satisfaction!
–  There are inherently tradeoffs in most architectural

choices!
–  E.g. Performance vs. security, initial cost vs.

maintainability !
•  Making successful tradeoffs requires

understanding the nature, source and priority of
quality requirements!

7!
CIS 422/522

CIS 422/522 Winter 2014! 13!

The Architectural Business Cycle!

Business Goals
 Hardware
 Software
 Marketing
 other

Product Planning
 Economic Evaluation
 Development Strategy
 Marketing Strategy
 Prioritization

Requirements
 Capabilities
 Qualities
 Reusability

Architecture
 Tradeoffs of
 quality goals

Strategic
Plan

ConOps or BRD
Business

Requirements
Definition

SRS
Software

Requirements
Specification

Architecture
Design

Documents

Traceability

Detailed
Design

Internal
Design

Documentation

Code

Stakeholder goals

Design decisions,
tradeoffs and constraints

CIS 422/522 Winter 2014! 14!

Implications for the Development
Process!

Goal is to keep developmental goals and architectural
capabilities in synch:!
•  Understand the goals for the system (e.g., business

case or mission)!
•  Understand/communicate the quality requirements!
•  Design architecture(s) that satisfy quality

requirements!
–  Choose appropriate architectural structures!
–  Design structures to satisfy qualities!
–  Document to communicate design decisions!

•  Evaluate/correct the architecture!
•  Implement the system based on the architecture!

8!
CIS 422/522

CIS 422/522 Winter 2014! 15!

Quality Goals!

Behavioral (observable)!
•  Performance!
•  Security !
•  Availability !
•  Reliability!
•  Usability!
!
! 
Properties resulting from the
properties of components,
connectors and interfaces
that exist at run time.!

Developmental Qualities!
•  Modifiability(ease of change)!
•  Portability!
•  Reusability!
•  Ease of integration !
•  Understandability!
•  Independent work

assignments 
!
!Properties resulting from the
properties components,
connectors and interfaces
that exist at design time
whether or not they have any
distinct run-time
manifestation.!

CIS 422/522 Winter 2014! 16!

Designing Architectures!

9!
CIS 422/522

CIS 422/522 Winter 2014! 17!

Elements of Architectural Design!

•  Design goals!
–  What are we trying to accomplish in the

decomposition?!
•  Relevant Structure!

–  How to we capture and communicate design
decisions?!

–  What are the components, relations, interfaces?!
•  Decomposition principles!

–  How do we distinguish good design decisions?!
–  What decomposition (design) principles support the

objectives?!
•  Evaluation criteria!

–  How do I tell a good design from a bad one?!

CIS 422/522 Winter 2014! 18!

Design Means…!
•  Design Goals: the purpose of design is to solve

some problem in a context of assumptions and
constraints!
–  Assumptions: what must be true of the design!
–  Constraints: what should not be true!
–  These define the design goals!

•  Process: design proceeds through a sequence of
decisions!
–  A good decision brings us closer to the design goals!
–  An idealized design process systematically makes

good decisions!
–  Any real design process is chaotic!

•  Good Design: by definition a good design is one
that satisfies the design goal!

10!
CIS 422/522

CIS 422/522 Winter 2014! 19!

The Design Space!

•  A Design: is (a representation of) a
solution to a problem !
–  Represents a set of choices!

•  Typically large set of possible
choices!

•  Must navigate through possibilities!
•  Invariably requires tradeoffs!

–  Some designs are better than
others (notion of good design)!

–  How do we know: !
•  Where we are going? !
•  Which choice to make?!
•  Whether we have arrived?!

Problem
Space!

Possible
Solutions “Good” 

solutions  
(designs)!

Our 
design!x x x

x x x

Design  
Constrains!

CIS 422/522 Winter 2014! 20!

Which structures should we use?!

•  Choice of structure depends the specific
design goals !

•  Compare to architectural blueprints!
–  Different view for load-bearing structures, electrical,

mechanical, plumbing!

Structure! Components! Interfaces! Relationships!
Calls Structure! Programs

(methods,
services)!

Program interface and
parameter declarations!

Invokes with
parameters  
(A calls B)!

Data Flow! Functional tasks! Data types or
structures!

Sends-data-to!

Process! Sequential
program (process,
thread, task)!

Scheduling and
synchronization
constraints!

Runs-concurrently-with,
excludes, precedes!

11!
CIS 422/522

CIS 422/522 Winter 2014! 21!

Elevation/Structural!

CIS 422/522 Winter 2014! 22!

Models/Views!

•  Each is a view of the same house!
•  Different views answer different kinds of questions!

–  How many electrical outlets are available in the kitchen?!
–  What happens if we put a window here?!

•  Designing for particular software qualities also
requires the right architectural model or “view”!
–  Any model can present only a subset of system structures

and properties!
–  Different models allows us to answer different kinds of

questions about system properties!
–  Need a model that makes the properties of interest and the

consequences of design choices visible to the designer and
other stakeholders!

12!
CIS 422/522

CIS 422/522 Winter 2014! 23!

Navigating the Design Space!

•  Design principles, heuristics, and methods
assist the designer in navigating the design
space!
–  Design is a sequence of decisions!
–  Methods help tell us what kinds of decisions

should be made!
–  Principles and heuristics help tell us:!

•  The best order in which to make decisions!
•  Which of the available choices will lead to the design

goals!

CIS 422/522 Winter 2014! 24!

Example: 
Designing the Module Structure!

13!
CIS 422/522

CIS 422/522 Winter 2014! 25!

Modularization!

•  For large, complex software, must divide the
development into work assignments (WBS).
Each work assignment is called a “module.”!

•  Properties of a “good” module structure!
–  Parts can be designed, understood, or

implemented independently!
–  Parts can be tested independently!
–  Parts can be changed independently!
–  Integration goes smoothly!

CIS 422/522 Winter 2014! 26!

What is a module?!

•  A module is characterized by two things:!
–  Its interface: services that the module provides to

other parts of the systems!
–  Its secrets: what the module hides (encapsulates).

Design/implementation decisions that other parts
of the system should not depend on!

•  Modules are abstract, design-time entities !
–  Modules are “black boxes” – specifies the visible

properties but not the implementation!
–  May or may not directly correspond to

programming components like classes/objects!

14!
CIS 422/522

CIS 422/522 Winter 2014! 27!

A Simple Module!

•  A simple integer stack!
•  The interface specifies what a

programmer needs to know to use
the stack correctly, e.g.!

–  push: push integer on stack top!
–  pop: remove top element!
–  peek: get value of top element!

•  The secrets (encapsulated) any
details that might change from one
implementation to another!

–  Data structures, algorithms!
–  Details of class/object structure!

•  A module spec is abstract:
describes the services provided but
allows many possible
implementations!

stack
peek(int)

push(int)

pop()

CIS 422/522 Winter 2014! 28!

Module Hierarchy!

•  For large systems, the set of modules need to be
organized such that!
–  We can check that all of the functional requirements

have been allocated to some module of the system!
–  Developers can easily find the module that provides

any given capability!
–  When a change is required, it is easy to determine

which modules must be changed!
•  The module hierarchy defined by the submodule-

of relation provides this architectural view!

15!
CIS 422/522

CIS 422/522 Winter 2014! 29!

Modular Structure!
•  Comprises components, relations, and interfaces!
•  Components!

–  Called modules!
–  Leaf modules are work assignments!
–  Non-leaf modules are the union of their submodules!

•  Relations (connectors)!
–  submodule-of => implements-secrets-of!
–  The union of all submodules of a non-terminal module must

implement all of the parent module’s secrets!
–  Constrained to be acyclic tree (hierarchy)!

•  Interfaces (externally visible component behavior)!
–  Defined in terms of access procedures (services or method)!
–  Only external (exported) access to internal state!

CIS 422/522 Winter 2014! 30!

Module Hierarchy!
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Leaf Modules = !
Work

assignments!

16!
CIS 422/522

CIS 422/522 Winter 2014! 31!

Decomposition Approach!

CIS 422/522 Winter 2014! 32!

Decomposition Strategies Differ!

•  How do we develop this structure so that we
know the leaf modules make independent work
assignments?!

•  Many ways to decompose hierarchically!
–  Functional: each module is a function!
–  Steps in processing: each module is a step in a chain

of processing!
–  Data: data transforming components!
–  Client/server!

•  But, these result in strong dependencies (strong
coupling)!

17!
CIS 422/522

CIS 422/522 Winter 2014! 33!

Information Hiding Decomposition!
•  Approach: divide the system into submodules according to the

kinds of design decisions they encapsulate (secrets)!
–  Design decisions that are closely related (likely to change together)

are grouped in the same submodule!
–  Design decisions that are weakly related (likely to change

independently) are allocated to different modules!
–  Characterize each module by its secrets (what it hides)!

•  Viewed top down, each module is decomposed into
submodules such that!
–  Each design decision allocated to the parent module is allocated to

exactly one child module!
–  Together the children implement all of the decisions of the parent!

•  Stop decomposing when each module is!
–  Simple enough to be understood fully!
–  Small enough that it makes sense to throw it away rather than re-do!

•  This is called an information-hiding decomposition!

CIS 422/522 Winter 2014! 34!

Module Hierarchy!
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Given a set of likely
changes C1, C2, … Cn
and following these
rules, what happens:!
•  To each change?!
•  To things that  
 change together?!
•  Change separately?!

18!
CIS 422/522

CIS 422/522 Winter 2014! 35!

Evaluation Criteria!

•  Evaluation criteria follow from goals of the model: should
be able to answer “yes” to the following review questions?!

•  Completeness!
–  Is every aspect of the system the responsibility of one module?!
–  Do the submodules of each module partition its secrets?!

•  Ease change!
–  Is each likely change hidden by some module?!
–  Are only aspects of the system that are very unlikely to change

embedded in the module structure?!
–  For each leaf module, are the module’s secrets revealed by it’s

access programs?!
•  Usability!

–  For any given change, can the appropriate module be found
using the module guide!

CIS 422/522 Winter 2014! 36!

Specifying Abstract Interfaces!

19!
CIS 422/522

CIS 422/522 Winter 2014! 37!

Method of Communication!
Module Interface Specifications!

–  Documents all assumptions user’s can make about the
module’s externally visible behavior (of leaf modules)!

•  Access programs, events, types, undesired events!
•  Design issues, assumptions!

–  Document purpose(s)!
•  Provide all the information needed to write a module’s

programs or use the programs on a module’s interface
(programmer’s guide, user’s guide)!

•  Specify required behavior by fully specifying behavior of the
module’s access programs!

•  Define any constraints!
•  Define any assumptions!
•  Record design decisions!

CIS 422/522 Winter 2014! 38!

Why these properties?!

Module Implementer!
•  The specification tells me

exactly what capabilities my
module must provide to users!

•  I am free to implement it any
way I want to!

•  I am free to change the
implementation if needed as
long as I don’t change the
interface!

Module User!
•  The specification tells me how

to use the module’s services
correctly!

•  I do not need to know anything
about the implementation
details to write my code!

•  If the implementation changes,
my code stays the same!

Key idea: the abstract interface specification defines!
a contract between a module’s developer and its users  

that allows each to proceed independently!

20!
CIS 422/522

CIS 422/522 Winter 2014! 39!

Design Principles!

CIS 422/522 Winter 2014! 40!

What are Principles?!

•  Principle (n): a comprehensive and
fundamental rule, doctrine, or assumption!

•  Design Principles – rules that guide
developers in making design decisions
consistent with overall design goals and
constraints!
–  Guide the decision making process of design by

helping choose between alternatives!
–  Embodied in methods and techniques (e.g., for

decompositions)!

21!
CIS 422/522

CIS 422/522 Winter 2014! 41!

Three Key Design Principles!

•  Most solid first!
•  Information hiding !
•  Abstraction!

CIS 422/522 Winter 2014! 42!

Principle: Most Solid First!

•  View design as a sequence of decisions!
–  Later decisions depend on earlier!
–  Early decisions harder to change!

•  Most solid first: in a sequence of decisions, those that
are least likely to change should be made first!

•  Goal: reduce rework by limiting the impact of changes!
•  Application: used to order a sequence of design

decisions!
–  Generally applicable to design decisions!
–  Module decomposition – ease of change!
–  Developing families – create most commonality!

22!
CIS 422/522

CIS 422/522 Winter 2014! 43!

Information Hiding!

•  Design principle of limiting dependencies
between components by hiding information
other components should not depend on !

•  An information hiding decomposition is one
following the design principles that (Parnas):!
–  System details that are likely to change

independently are put in different modules !
–  The interface of a module reveals only those

aspects considered unlikely to change!
–  Details other modules should not depend on are

encapsulated!

CIS 422/522 Winter 2014! 44!

Abstraction!

•  General: disassociating from specific
instances to represent what the instances
have in common !
–  Abstraction defines a one-to-many relationship

E.g., one type, many possible implementations!
•  Modular decomposition: Interface design

principle of providing only essential
information and suppressing unnecessary
detail!

23!
CIS 422/522

CIS 422/522 Winter 2014! 45!

Abstraction!

•  Two primary uses!
•  Reduce Complexity!

–  Goal: manage complexity by reducing the amount of
information that must be considered at one time!

–  Approach: Separate information important to the problem at
hand from that which is not!

•  Abstraction suppresses or hides “irrelevant detail”!
•  Examples: stacks, queues, abstract device!

•  Model the problem domain!
–  Goal: leverage domain knowledge to simplify understanding,

creating, checking designs!
–  Approach: Provide components that make it easier to model

a class of problems!
•  May be quite general (e.g., type real, type float)!
•  May be very problem specific (e.g., class automobile, book object)!

CIS 422/522 Winter 2014! 46!

Quality Assurance!

24!
CIS 422/522

CIS 422/522 Winter 2014! 47!

Requires Feedback-Control!

•  Uncertainty means we cannot get everything
under control then run on autopilot!

•  Rather control requires continuous feedback!
1.  Define ideal!
2.  Make a step!
3.  Measure deviation from idea!
4.  Correct direction or redefine ideal and go back to 2!

CIS 422/522 Winter 2014! 48!

QA Questions!

•  Do the requirements capture what the
stakeholders want?!
–  Are they correct?!
–  Are they complete relative to stakeholder needs?!

•  Do they define functional and quality requirements?!

•  Are they internally complete and consistent?!
•  What if they change?!
•  Is the code consistent with the requirements?!
•  How do we check for these properties? !!

25!
CIS 422/522

CIS 422/522 Winter 2014! 49!

Increase in Software Cost-to-fix vs. Phase (1976) *!

10

20

50

100

200

500

1000

R
el

at
iv

e
co

st
 to

 fi
x

de
fe

ct

2

1

5

Requirements Design Code Development Acceptance Operation
test test

Smaller Software Projects •

Phase in which defect was fixed

10

20

50

100

200

500

1000

2

1

5

Requirements Design Code Development Acceptance Operation
test test

•

* Barry Boehm - A View of 20th and 21st Century Software Engineering

COMS 510X Weiss Fall 2012 V&V

CIS 422/522 Winter 2014! 50!

Quality is Cumulative!

•  Are the requirements valid?!
•  Complete? Consistent? Implementable?!
•  Testable?!

•  Does the design satisfy requirements?!
•  Are all functional capabilities included?!
•  Are qualities addressed (performance,

maintainability, usability, etc.?!

•  Do the modules work together to implement all
the functionality?!

•  Are likely changes encapsulated?!
•  Is every module well defined!

•  Implement the required functionality?!
•  Race conditions? Memory leaks? Buffer

overflow?!

Requirements
Analysis

Architectural
Design

Detailed
Design

Coding

26!
CIS 422/522

CIS 422/522 Winter 2014! 51!

We need a plan!!

•  QA activities are!
–  Critical to control (and project success)!
–  Part of every phase of the project!
–  Time consuming, labor intensive and expensive!

•  Potentially unbounded use of resources!
•  Consumes significant project resources!

–  Cannot do everything, need to choose!
•  Suggests need to plan QA activities!

–  Detect issues as early as possible!
–  Target highest priority/risk issues for project!
–  Support cost-effective use of resources!

CIS 422/522 Winter 2014! 52!

QA Activities!

Verification and Validation!

27!
CIS 422/522

CIS 422/522 Winter 2014! 53!

Validation and Verification!

•  Validation: activities to answer the question –
“Are we building a system the customer
wants?”!
–  Familiar activity: customer review of prototype!

•  Verification: activities to answer the question –
“Are we building the system consistent with its
specifications?”!
–  Most familiar verification activity is functional testing!

•  Both are processes, both have many
variations!

CIS 422/522 Winter 2014! 54!

V&V Methods!

•  Most applied V&V uses one of two methods!
•  Review: use of human skills to find defects!

–  Pro: applies human understanding, skills. Good for
detecting logical errors, problem misunderstanding!

–  Con: poor at detecting inconsistent assumptions,
details of consistency, completeness. Labor intensive!

•  Testing: use of machine execution!
–  Pro: can be automated, repeated. Good at detecting

detail errors, checking assumptions!
–  Con: cannot establish correctness or quality!

•  Tend to reinforce each other!

28!
CIS 422/522

CIS 422/522 Winter 2014! 55!

Peer Review Process!

•  Peer Review: a process by which a software product
is examined by peers of the product’s authors with
the goal of finding defects!

•  Why do we do peer reviews?!
–  Review is often the only available verification method before

code exists!
–  Formal peer reviews (inspections) instill some discipline in

the review process!
–  Generally the most effective manual technique for detecting

defects!
•  Means that you should be doing peer reviews, but…!

–  Doesn’t mean that manual inspections cannot be improved!
–  Doesn’t mean that manual inspections are the best way to

check for every properties (e.g., completeness)!
•  Should be one component of the overall V&V process!

CIS 422/522 Winter 2014! 56!
© S. Faulk 2010 56

Example: IEEE
software inspection

process 
(aka Fagan Inspection)!

29!
CIS 422/522

CIS 422/522 Winter 2014! 57!

Peer Review Problems!

•  Tendency for reviews to be incomplete and
shallow!

•  Reviewers typically swamped with information,
much of it irrelevant to the review purpose!

•  Reviewers lack clear individual responsibility!
•  Effectiveness depends on reviewers to initiate

actions!
•  Large meeting size hampers effectiveness,

increases cost!
•  No way to cross-check unstated assumptions!

CIS 422/522 Winter 2014! 58!

Active Reviews!
Goal: Make the reviewer(s) think hard about what they are reviewing!
1) Identify several types of review each targeting a different type of

error!
2) Identify appropriate classes of reviewers for each type of review!
3) Assign reviews to achieve coverage: each applicable type of

review is applied to each part of the specification!
4) Design review questionnaires (key difference)!

–  Define questions that the reviewer must answer by using the
specification!

–  Target questions to bring out key issues!
–  Phrase questions to require “active” answers (not just “yes”)!

5) Review consists of filling out questionnaires defining!
6) Review process: overview, review, meet !

–  One-on-one or small, similar group!
–  Focus on discussion of issues identified in review!
–  Purpose of discussion is understanding of the!

30!
CIS 422/522

CIS 422/522 Winter 2014! 59!

Examples!
•  In practice: an active review asks a qualified reviewer

to check a specific part of a work product for specific
kinds of defects by answering specific questions, e.g.,!
–  Ask a designer to check the functional completeness by

showing the calls sequences sufficient to implement a set of
use cases!

–  Ask a systems analyst to check the ability to create required
subsets by showing which modules would use which!

–  As a developer to check the data validity of a module’s
specification by showing what the output would be for in-
range and out-of-range values!

–  Ask a technical writer to check the SRS for grammatical
errors!

•  Can be applied to any kind of artifact from
requirements to code!

CIS 422/522 Winter 2014! 60!

Why Active Reviews Work!

•  Focuses reviewer’s skills and energies where they
have skills and where those skills are needed!
–  Questionnaire allows reviewers to concentrate on one

concern at a time!
–  No one wastes time on parts of the document where there is

little possibility of return. !
•  Largest part of review process (filling out

questionnaires) is conducted independently and in
parallel!

•  Reviewers must participate actively but need not risk
speaking out in large meetings!

•  Downside: much more work for V&V (but can be
productively pursued in parallel with document
creation)!

31!
CIS 422/522

CIS 422/522 Winter 2014! 61!

Development Realities!

CIS 422/522 Winter 2014! 62!

Developer Realities!

•  Nothing counts but delivery!
–  Software product properties!

•  Sufficient desired functionality!
•  Acceptable qualities!

–  Process properties!
•  Timely!
•  “low cost” (acceptable ROI)!

•  But…!
–  Delivery must be repeatable, usually building on legacy

systems!
–  The target moves!
–  The process is done largely in the dark!

32!
CIS 422/522

CIS 422/522 Winter 2014! 63!

Issues!

•  Balancing all these factors is difficult!
•  Easiest to come up with partial, short-term

solutions!
–  Acceptable solution but late, over cost!
–  On time delivery but difficult to change, maintain!
–  Deliver but is not what the customer wants!
–  Quick fix, difficult to maintain, etc.!

•  Results from complexity, shortsighted approach!
–  Huge pressure to “code first, ask questions later”!
–  Overall problem too complex to comprehend at once!
–  Focus on parts of the problem, excluding others!
–  Fail to look ahead (paint ourselves into a corner)!

CIS 422/522 Winter 2014! 64!

Software Engineering!

•  Principles of Software Engineering provide an
antidote!

•  Helps to foresee downstream problems of
poor decisions!

•  Supports doing the right thing rather than only
the most “urgent”!

•  Provides principles and tools to keep a project
in control!

33!
CIS 422/522

CIS 422/522 Winter 2014! 65!

Real meaning of “control”!

•  What does “control” really mean?!
•  Cannot get everything under control then run

on autopilot!
•  Rather, control means a continuous feedback

loop!
1.  Define ideal or goal!
2.  Make a step!
3.  Measure deviation from idea!
4.  Correct direction or redefine ideal and  

go back to 2!

CIS 422/522 Winter 2014! 66!

Questions?!

